

Exercise 23

A second order quasi-instantaneous reaction $A_1 + A_2 \rightarrow P$ is carried out in a microreactor. Multi-point injection of reactant A_2 is required to reduce the hot spot.

Data

Mean heat capacity of reaction mixture $c_p = 1700 \text{ J kg}^{-1} \text{ K}^{-1}$

Density of reaction mixture $\rho = 1142 \text{ kg m}^{-3}$

Reaction enthalpy $\Delta H_r = -120 \text{ kJ mol}^{-1}$

Inlet concentrations $c_{1,0} = c_{2,0} = 1.56 \text{ kmol m}^{-3}$

Total inlet flowrates $\dot{V}_{10} = \dot{V}_{20} = 0.9 \cdot 10^{-7} \text{ m}^3 \text{ s}^{-1}$

Number of injection points for reactant $A_2 = 6$

Equal flow partition of reactant A_2

Microchannel diameter $d = 150 \cdot 10^{-6} \text{ m}$

Overall volumetric heat transfer coefficient : $U_v = 5 \cdot 10^6 \text{ W m}^{-3} \text{ K}^{-1}$

Cooling temperature and inlet flow temperatures $T_c = T_{inj} = T_0 = 50^\circ\text{C}$

Questions

- Calculate the adiabatic temperature rise at each injection point assuming $t_{rx} \ll t_{heat}$ and $t_{rx} \ll t_{mx}$
- For each segment, calculate the length required to remove 50% of the reaction heat.